您现在所在的位置: 首页 省/区考 全国

公务员考试行测数量关系专项常考题集合287

发布时间:2022-08-31 22:50     浏览量:22

1、【数量关系】四个连续奇数的和为32,则它们的积为多少?

A:945

B:1875

C:2745

D:3465

正确答案:D

解析:方法一,设四个连续奇数依次是a、a+2、a+4、a+6,则4a+12=32,解得a=5,即四个奇数是5、7、9、11,则它们的乘积为5×7×9×11=3465。故本题选D。
方法二,32÷4=8,即这四个连续奇数的平均值为8,故中间两个奇数应为7和9,其余两个奇数相应为5和11,则它们的乘积为5×7×9×11=3465。故本题选D。

考题出处:2012年浙江省公务员录用考试《行测》试卷第49题

2、【数量关系】科学家为研究某自然生态小岛上一种鸟的数量,抓了300只这种鸟,在其身上作出标记后放飞。数日后再抓回100只,发现有标记的鸟为四只。则这个岛上大约有(       )只这种鸟。

A:1200

B:2500

C:6000

D:7500

正确答案:D

解析:由题意可知,有标记的鸟占鸟的总数量之比约为4÷100=4%,故总的鸟数为300÷4%=7500只。故本题选D。

考题出处:待更新

3、【数量关系】一家人晚饭后去散步,爸爸给晓宇出了一道数学题:甲、乙两人年龄之和比丙大70岁,又已知甲比乙大1岁,比丙的2倍还多13岁,请你帮晓宇算出乙、丙的年龄之和为多少岁?

A:57

B:56

C:55

D:58

正确答案:A

解析:根据题意有,甲+乙一丙=70……①,甲=2丙+13……②,将②代入①中可得乙+丙+13=70,故乙+丙=70-13=57(岁)。故本题选择A项。

考题出处:2014年吉林省公务员录用考试《行测》试卷(甲类)第58题

4、【数量关系】有两个边长为整数且不相同的矩形,其中一边的长度分别为2016和2017,另一边的长度均不超过2017。已知它们的对角线长度相等,则两个矩形的周长之差为:

A:37

B:38

C:72

D:76

正确答案:C

解析:设两个矩形的另一边分别为x、y,根据矩形的对角线相等,由勾股定理可知20162+x2=20172+y2,得x2-y2=20172-20162,即(x+y)(x-y)=(2017+2016)×(2017-2016)=4033。将4033写成两个整数乘积的形式,为4033=1×4033或4033=37×109。结合前面分析过程,可知x+y>x-y,因此x+y=4033或x+y=109。若x+y=4033,则x-y=1,解得x=2017,y=2016,此时两个矩形形状相同,不符合题干条件。因此只能是x+y=109,x-y=37,解得x=73,y=36。则所求为2×(2016+73)-2×(2017+36)=2×(73-36-1)=72,故本题选C。

考题出处:2016年四川省公务员录用考试《行测》试卷(下半年)第3题

5、【数量关系】某公司年终分红,董事会决定拿出公司当年利润的10%奖励甲、乙、丙三位高管,原本打算依据职位高低按甲∶乙∶丙比例为3∶2∶1的方案进行分配,最终董事会决定根据实际贡献按甲∶乙∶丙比例为4∶3∶2分配奖金。请问最终方案中谁得到的奖金比原有方案有所提高?

A:甲

B:乙

C:丙

D:不清楚

正确答案:C

解析:原来的奖金为3+2+1=6份,现在为4+3+2=9份,那么不妨设奖金为6和9的公倍数36。则原来甲可以得到36÷6×3=18,乙可以得到36÷6×2=12,丙可以得到36÷6×1=6。最终的方案中,甲可以得到36÷9×4=16,乙可以得到36÷9×3=12,丙可以到36÷9×2=8,对比可知,丙得到的奖金比原方案有所提高。故本题选C。

考题出处:待更新

6、【数量关系】矩形的一边增加了10%,与它相邻的一边减少了10%,那么矩形的面积:

A:增加了10%

B:减少了10%

C:不变

D:减少了1%

正确答案:D

解析:取边长为1的正方形进行讨论,变化后的面积为1.1×0.9=0.99,所以面积减少了(1-0.99)÷1=1%。故本题选D。

考题出处:待更新

7、【数量关系】若半径不相等的两个圆有公共点,那么这两个圆的公切线最多有:

A:1条

B:2条

C:3条

D:4条

正确答案:C

解析:半径不等的两个圆有公共点,则它们内切、相交或者外切。
当两个圆内切时,它们有1条公切线;
当两个圆相交时,它们有2条公切线;
当两个圆外切时,它们有3条公切线。
故最多为3条公切线,应该选择C。

考题出处:待更新

8、【数量关系】团体操表演中,编号为1~100的学生按顺序排成一列纵队,编号为1的学生拿着红、黄、蓝三种颜色的旗帜,以后每隔2个学生有1人拿红旗,每隔3个学生有1人拿蓝旗,每隔6个学生有1人拿黄旗。问所有学生中有多少人拿两种颜色以上的旗帜?

A:13

B:14

C:15

D:16

正确答案:B

解析:由题意可知,编号为1、4、7、10……的学生会拿红旗,编号为1、5、9、13……的学生会拿蓝旗,编号为1、8、15、22……的学生会拿黄旗。拿红旗的学生编号可表示为3n+1,拿蓝旗的为4n+1,拿黄旗的为7n+1。则编号为12n+1的学生会拿红蓝旗,有9人;编号为28n+1的学生会拿蓝黄旗,有4人;编号为21n+1的学生会拿红黄旗,有5人,编号为84n+1的学生会拿红蓝黄旗,有2人。根据容斥原理,拿两种颜色以上旗帜的有9+4+5-2×2=14人,故本题选B。

考题出处:待更新

9、【数量关系】假设7个相异正整数的平均数是14,中位数是18,则此7个正整数中最大的数最大是多少?

A:58

B:44

C:35

D:26

正确答案:C

解析:7个数字之和为14×7=98,要使7个数中最大的数取得最大值,则其他数字需取最小值,由于中位数为18且各个数字各不相等,则其余六个数应分别为1、2、3、18、19、20,因此最大数的最大值为98-1-2-3-18-19-20=35,故本题选C。

考题出处:2014年天津市公务员录用考试《行测》试卷第13题

10、【数量关系】小王的汽车每年基础保险费用为4500元,由于购车后从未出险理赔,目前按基础保险费用的60%收取保费。近日小王停车时撞到其他车辆,自行修理两辆车需X元,如果由保险公司全额赔付,则未来3年内保费折扣分别变更为基础保险费用的100%、85%和70%。问:X在超过多少元时,出险理赔比自行修理更划算?

A:1350

B:1800

C:3375

D:3825

正确答案:C

解析:由保险公司全额赔付时,未来3年内多付的基础保险费用为4500×(100%-60%+85%-60%+70%-60%)=4500×75%=3375元,因此当X超过3375元时,出险理赔比自行修理更划算。故本题选C。

考题出处:2019年四川省公务员录用考试《行测》试卷(下半年)第54题

PS:考题出处均整理自网友分享的考生回忆版题目内容,数据基于网络内容整理,仅供参考




考盟教育申明:凡注明“来源:考盟教育“的所有文字及图片等资料,版权均属考盟教育所有,转载请注明出处;信息来源为其它出处时,仅代表原发布机构或个人观点,不代表本网观点或立场或构成硬性指导建议,也不代表考盟教育赞同其观点,如有侵权请联系客服处理。