1、【数量关系】某商店销售一批尾货服装,在进价基础上溢价20%销售,销售一定数量后为尽快回收资金,计划将剩余的服装降价销售。商家发现如果以进价的70%销售的话,总销售收入与进价将相同。如商家希望获得相当于进价10%的利润,则剩余服装应在进价基础上:
A:降价5%
B:降价10%
C:涨价5%
D:涨价10%
正确答案:A
解析:设服装数量为1,服装进价为1,则开始时的售价为1.2,设开始时卖出的数量为x,则1.2x+0.7(1-x)=1×1,x=0.6。要获得相当于进价10%的利润,剩余服装的售价应定为(1.1-0.6×1.2)÷0.4=0.95,降价5%,故本题选A。
考题出处:2016年四川省公务员录用考试《行测》试卷(下半年)第4题
2、【数量关系】有一个整数,用它分别去除157、234和324,得到的三个余数之和是100。这个整数是多少?
A:44
B:43
C:42
D:41
正确答案:D
解析:设这个整数为m,根据题意,157=mx+a、234=my+b、324=mz+c,其中余数a、b、c之和为100。把这三个式子相加,157+234+324=m(x+y+z)+100,即615=m(x+y+z),即m能整除615,615=3×5×41,只有D项符合。故本题选D。
考题出处:2011北京市公务员录用考试《行测》试卷第73题
3、【数量关系】将所有由1、2、3、4组成且没有重复数字的四位数,按从小到大的顺序排列,则排在第12位的四位数是:
A:3124
B:2341
C:2431
D:3142
正确答案:C
解析:依题意,1开头的四位数有3×2×1=6个。2开头的四位数也有3×2×1=6个。则排在第12位的四位数是以2开头的最大的四位数是2431,故本题选C。
考题出处:2016年山东省公务员录用考试《行测》试卷第89题, 2016年黑龙江省公务员录用考试《行测》试卷(公检法)第99题,2016年江苏省公务员录用考试《行测》试卷(B类)第68题
4、【数量关系】有一个长方形的对角线为17 cm,长比宽多3 cm,那么这个长方形的面积为:
A:140 cm2
B:136 cm2
C:132 cm2
D:128 cm2
正确答案:A
解析:设长为x,宽为y,则长方形的面积为xy,由题意可知,x2+y2=172=289,x-y=3,由完全平方公式可得,xy=(289-9)÷2=140 cm2,故本题选A。
考题出处:2017年天津市公务员录用考试《行测》试卷(下半年)第2题
5、【数量关系】姐弟俩相差3岁,2000年姐弟两人年龄之和是妈妈年龄的四分之一,2006年姐弟两人年龄之和是妈妈年龄的二分之一。问:哪一年姐弟两人年龄之和等于妈妈的年龄?
A:2012
B:2018
C:2024
D:2027
正确答案:D
解析:设2000年姐弟两人的年龄和为x,妈妈的为4x。2006年姐弟两人的年龄和为(x+12),妈妈的为(4x+6),则有2×(x+12)=4x+6,解得x=9。则2000年姐弟两人年龄和为9,妈妈年龄为36。姐弟两人每年可追上1岁,赶上妈妈的年龄需要追(36-9)÷(2-1)=27年,故27年后即2027年姐弟两人的年龄之和等于妈妈的年龄。
考题出处:2018年广西公务员录用考试《行测》试卷第55题
6、【数量关系】某农户在鱼塘里放养了一批桂花鱼苗。过了一段时间,为了得知鱼苗存活数量,他先从鱼塘中捕出200条鱼,做上标记之后,再放回鱼塘,过几天后,再从鱼塘中捕出500条鱼,其中标有记号的鱼苗有25条。假设存活的鱼苗在这几天没有死,则这个鱼塘里存活鱼苗的数量最有可能是( )条。
A:1600
B:2500
C:3400
D:4000
正确答案:D
解析:设鱼塘中鱼苗数量为x。则x:200=500:25,解得x=4000。故本题选择D项。
考题出处:2015年广州市公务员录用考试《行测》试卷第34题
7、【数量关系】水果店运来的西瓜个数是哈密瓜个数的4倍,如果每天卖130个西瓜和36个哈密瓜,那么哈密瓜卖完后还剩下70个西瓜。该店共运来西瓜和哈密瓜多少个?
A:225
B:720
C:790
D:900
正确答案:D
解析:当哈密瓜每天卖36个,西瓜每天卖36×4=144个时,二者恰好同时卖完,所以共卖了70÷(144-130)=5天,共运来西瓜和哈密瓜5×(144+36)=900个。故本题选D。
考题出处:待更新
8、【数量关系】某大学法学院72名研究生当中有36人是中国法律援助网志愿者,有28人是广东省法律援助中心志愿者,还有一些同学是学校法律援助协会会员。已知参加学校法律援助协会的人数是既是中国法律援助网志愿者又参加学校法律援助协会人数的3倍,是三种组织均参加了的人数的6倍;既参加了学校法律援助协会又是广东省法律援助中心志愿者的人数是三种组织都参加了的人数的2倍;既是中国法律援助网志愿者又是广东省法律援助中心志愿者的人数有10人,则参加了学校法律援助协会的有( )人。
A:24
B:28
C:36
D:48
正确答案:C
解析:设三种组织均参加的人数有x人,则参加学校法律援助协会的人数有6x人,既是中国法律援助网志愿者又参加学校法律援助协会的人数有2x人,既参加了学校法律援助协会又是广东省法律援助中心志愿者的人数有2x人,既是中国法律援助网志愿者又是广东省法律援助中心志愿者的人数有10人,则根据容斥原理,36+28+6x-10-2x-2x+x=72,解得3x=18,则6x=36人,故本题选C。
考题出处:2015年深圳市公务员录用考试《行测》试卷第54题
9、【数量关系】某公司年终分红,董事会决定拿出公司当年利润的10%奖励甲、乙、丙三位高管,原本打算依据职位高低按甲∶乙∶丙比例为3∶2∶1的方案进行分配,最终董事会决定根据实际贡献按甲∶乙∶丙比例为4∶3∶2分配奖金。请问最终方案中谁得到的奖金比原有方案有所提高?
A:甲
B:乙
C:丙
D:不清楚
正确答案:C
解析:原来的奖金为3+2+1=6份,现在为4+3+2=9份,那么不妨设奖金为6和9的公倍数36。则原来甲可以得到36÷6×3=18,乙可以得到36÷6×2=12,丙可以得到36÷6×1=6。最终的方案中,甲可以得到36÷9×4=16,乙可以得到36÷9×3=12,丙可以到36÷9×2=8,对比可知,丙得到的奖金比原方案有所提高。故本题选C。
考题出处:待更新
10、【数量关系】由1、2、3组成的没有重复数字的所有三位数之和为多少?
A:1222
B:1232
C:1322
D:1332
正确答案:D
解析:对其中任何一个数字,分别有2次出现在个位,所以所有这些三位数的个位数字之和是(1+2+3)×2=12,同理所有这些三位数的十位、百位数字之和都是12,所以所有这些三位数之和是12+12×10+12×100=1332,故本题选D。
考题出处:待更新
PS:考题出处均整理自网友分享的考生回忆版题目内容,数据基于网络内容整理,仅供参考