1、【数量关系】某水果超市购进苹果和葡萄共计100千克,总值若干元,定价标准是苹果降价20%,葡萄提价20%,这样苹果和葡萄每千克价格均为9.6元,总值比原来减少140元。计算一下,该超市购进苹果有多少千克?
A:65
B:70
C:75
D:80
正确答案:C
解析:苹果与葡萄的进价分别为9.6÷0.8=12元、9.6÷1.2=8元。设购进苹果x千克,则有12x+8(100-x)=9.6×100+140,解得x=75。故本题选择C项。
考题出处:2015年天津市公务员录用考试《行测》试卷第6题
2、【数量关系】有两个边长为整数且不相同的矩形,其中一边的长度分别为2016和2017,另一边的长度均不超过2017。已知它们的对角线长度相等,则两个矩形的周长之差为:
A:37
B:38
C:72
D:76
正确答案:C
解析:设两个矩形的另一边分别为x、y,根据矩形的对角线相等,由勾股定理可知20162+x2=20172+y2,得x2-y2=20172-20162,即(x+y)(x-y)=(2017+2016)×(2017-2016)=4033。将4033写成两个整数乘积的形式,为4033=1×4033或4033=37×109。结合前面分析过程,可知x+y>x-y,因此x+y=4033或x+y=109。若x+y=4033,则x-y=1,解得x=2017,y=2016,此时两个矩形形状相同,不符合题干条件。因此只能是x+y=109,x-y=37,解得x=73,y=36。则所求为2×(2016+73)-2×(2017+36)=2×(73-36-1)=72,故本题选C。
考题出处:2016年四川省公务员录用考试《行测》试卷(下半年)第3题
3、【数量关系】某公司年终联欢,准备了52张编号分别为1至52的奖券用于抽奖。如果编号是2、3的倍数的奖券可分别兑换2份、3份奖品,编号同时是2和3的倍数的奖券只可兑换3份奖品,其他编号的奖券只可兑换1份奖品,则所有奖券可兑换的奖品总数是:
A:99份
B:100份
C:102份
D:104份
正确答案:D
解析:52÷2=26,即有26个编号是2的倍数;52÷3=17……1,即有17个编号是3的倍数;52÷6=8……4,即有8个编号既是2的倍数又是3的倍数,则可以领取2份奖礼品的有26-8=18人,可以领取3份奖品的有17人,剩余52-18-17=17人只能领1份奖品。总共需要奖品17+18×2+17×3=104份。故本题选D。
考题出处:2019年江苏省公务员录用考试《行测》试卷(B类)第64题,2019年江苏省公务员录用考试《行测》试卷(C类)第62题
4、【数量关系】王先生购买的医疗保险报销规定为:当年花费1300元(含)以内的部分全部自付,超出1300元部分自付10%,其余部分由保险支付。王先生在2018年第一次到医院看病时,自己支付了960元,第二次看病自付了520元,则王先生第二次看病时医院共收费:
A:1800元
B:1960元
C:2140元
D:2600元
正确答案:C
解析:由题意可知,第一次看病金额960元未超过1300元,为全部自付;第二次未超过1300元的部分自付金额为1300-960=340元,超过1300元的部分自付金额为520-340=180元。则第二次看病花费金额为340+180÷10%=2140元。故本题选C。
考题出处:待更新
5、【数量关系】现有一批零件,甲师傅单独加工需要4小时,乙师傅单独加工需要6小时。两人一起加工这批零件的50%需要( )小时。
A:0.6
B:1
C:1.2
D:1.5
正确答案:C
解析:假设零件总数为12,则每小时甲、乙加工的零件数分别为3、2,两人一起加工每小时加工数量为5,加工6个零件需要1.2小时,故本题选C。
考题出处:2017年广东省公务员录用考试《行测》试卷第26题
6、【数量关系】某乡镇举行运动会,共有长跑、跳远和短跑三个项目,参加长跑的有49人,参加跳远的有36人,参加短跑的有28人,只参加其中两个项目的有13人,参加全部项目的有9人。那么参加该次运动会的总人数为:
A:75
B:82
C:88
D:95
正确答案:B
解析:根据三者容斥公式,所求为49+36+28-13-9×2=82,故本题选择B项。
考题出处:2015年广东省公务员录用考试《行测》试卷(县级以上)第31题, 2015年广东省公务员录用考试《行测》试卷(乡镇)第25题
7、【数量关系】5个人的平均年龄是29,5个人中没有小于24的,那么年龄最大的人可能是多少岁?
A:46
B:48
C:50
D:49
正确答案:D
解析:要使年龄最大的人的年龄更大,则需使其他人的年龄更小。根据题意其他人的年龄最小为24,因此年龄最大的人可能是29×5-24×4=49岁。故本题选D。
考题出处:2013年天津市公务员录用考试《行测》试卷第15题
8、【数量关系】三边长均为整数且最大边长为2009的三角形共有多少个?
A:1008016
B:1009020
C:1010025
D:2019045
正确答案:C
解析:三角形两边之和大于第三边,两边之差小于第三边。
若最短边为1,则另一条边只能为2009,只有1种情况;最短边为2,另一条边为2009、2008,有2种情况;……;最短边为1005,另一条边为2009、2008、……、1005,有2009-1005+1=1005种情况。
若最短边为1006,另一条边为2009、2008、……、1006,有2009-1006+1=1004种情况;……;最短边为2009,另一条边为2009,有1种情况。
共有1+2+3+…+1005+1004+1003+…+1=10052=1010025个三角形,选择C。
考题出处:待更新
9、【数量关系】某工厂某种产品每月的产能为8000个,1月的销量为5000个,且预计每月的销量环比增加10%,则当年该产品库存最高的月份是:
A:4月
B:5月
C:6月
D:7月
正确答案:B
解析:设第x个月销量能超过产能,则有5000(1+10%)x-1≥8000,当x-1=5,即x=6时,1.15>1.6,即库存最高的应为5月,故本题选B。
考题出处:2014年上海市公务员录用考试《行测》试卷(A类)第72题,2014年上海市公务员录用考试《行测》试卷(B类)第69题
10、【数量关系】以一个矩形任意两条边为直径画圆,将该矩形划分成的区域数有几种不同的可能性?
A:1
B:2
C:3
D:4
正确答案:D
解析:①当长边∶短边=1∶1时,相对边、相邻边画圆都将矩形分成4个区域;②长边∶短边<2∶1时,相邻边画圆将矩形分成4个区域;相对长边画圆将矩形分成5个区域,相对短边画圆将矩形分成3个区域;③长边∶短边≥2∶1时,相邻边画圆将矩形分成5个区域;相对长边画圆将矩形分成7个区域,相对短边画圆将矩形分成3个区域。所以一共有4种不同的可能性。故本题选D。
考题出处:待更新
PS:考题出处均整理自网友分享的考生回忆版题目内容,数据基于网络内容整理,仅供参考