1、【数量关系】某市出租车运营方案调整如下:起步价由过去的5元2公里调整为8元3公里,运价由每公里1.2元上调至每公里1.6元,调整前后行程超过10公里则超出部分均需加收半价返程费。现在王先生打车由甲地去乙地,两地相距12公里,王先生所付出租车费比调整前多付多少元?(不计候车计费)
A:4.6
B:5.8
C:6.6
D:7.2
正确答案:B
解析:调整前出租车费为5+1.2×(12-2)+1.2×(12-10)÷2=18.2元,调整后出租车费为8+1.6×(12-3)+1.6×(12-10)÷2=24元,所求为24-18.2=5.8元。故本题选择B项。
考题出处:2015年河北省公务员录用考试《行测》试卷第72题
2、【数量关系】某加工厂要将一个表面积为384平方厘米的正方体金属原料切割成体积为8立方厘米的小正方体半成品,如果不计损失,这样的小正方体可以加工的个数为:
A:64
B:36
C:27
D:16
正确答案:A
解析:大正方体表面积为384,则每个面面积等于384÷6=64,则大正方体棱长为8,体积=8×8×8=512,已知小正方体体积为8,棱长为2,大正方体棱长是小正方体的整数倍,共可切割512÷8=64个,故本题选A。
考题出处:2015年吉林省公务员录用考试《行测》试卷(甲-9月)第95题,2015年吉林省公务员录用考试《行测》试卷(甲-4月)第95题
3、【数量关系】
某种商品第一天原价销售,第二天开始每天的价格比上一天下降原价的10%。在最后一天之前,每天的销量比上一天提高100%,最后一天的销量与第三天相同,总共6天全部卖完。如果这种商品的成本为原价的60%,则销售这种商品的总利润为总成本的:
A:
不到10%
B:
10%~20%
C:
20%~30%
D:
30%以上
正确答案:B
解析:
假设这种商品的原价为10,第一天的销量为1。根据题意,商品每天的售价下降10×10%=1,每天的销量为上一天的2倍(其中最后一天的销量与第三天相同),每件商品的成本为10×60%=6。那么这种商品6天的售价、销量以及每天的利润如下表所示:
时间 | 售价 | 销量 | 单件利润 | 总利润 |
第一天 | 10 | 1 | 10-6=4 | 1×4=4 |
第二天 | 9 | 2 | 9-6=3 | 2×3=6 |
第三天 | 8 | 4 | 8-6=2 | 4×2=8 |
第四天 | 7 | 8 | 7-6=1 | 8×1=8 |
第五天 | 6 | 16 | 6-6=0 | 0 |
第六天 | 5 | 4 | 5-6=-1 | 4×(-1)=-4 |
综上,商品的总利润为4+6+8+8+0+(-4)=22,总成本=单件成本×总销量=6×(1+2+4+8+16+4)=210。则销售这种商品的总利润为总成本的22÷210=10.X%,在10%和20%之间。
故本题选B。
考题出处:2021年山东省公务员录用考试《行测》试卷-考生回忆版第43题
4、【数量关系】某公司有29名销售员,负责公司产品在120个超市的销售工作。每个销售员最少负责3个超市,最多负责6个超市。负责4个超市的人最多但少于一半,而负责4个超市和负责5个超市的人总共负责的超市数为75个。问负责3个超市的人比负责6个超市的人多几个?
A:2
B:3
C:6
D:9
正确答案:C
解析:设负责4个超市和负责5个超市人数分别为x、y,则有4x+5y=75,由于5y和75能被5整除,则x能被5整除,又y<x≤14,则符合题意的只能是x=10,y=7。再设负责3个超市、负责6个超市的人数分别为m、n,则m+n=29-10-7=12,3m+6n=120-75=45,解得m=9,n=3,m-n=6。故本题选C。
考题出处:2014年山东省公务员录用考试《行测》试卷第59题
5、【数量关系】张明的家离学校4千米,他每天早晨骑自行车上学,以20千米/时的速度行进,恰好准时到校。一天早晨,因为逆风,他提前0.2小时出发,以10千米/时的速度骑行,行至离学校2.4千米处遇到李强,他俩互相鼓励,加快了骑车的速度,结果比平时提前5分24秒到校。他遇到李强之后每小时骑行多少千米?
A:16
B:18
C:20
D:22
正确答案:A
解析:注意题干中时间的单位不统一,应将单位统一为易于计算的分钟后再解题。正常情况下需要4÷20=0.2小时,即12分钟。以10千米/时的速度行驶了4-2.4=1.6千米,用了0.16小时,即9.6分钟。5分24秒,即5.4分钟。由于提前0.2小时(12分钟)出发,所以行驶2.4千米共用了12-9.6+12-5.4=9分钟,因此后来的速度为2.4÷(9÷60)=16千米/时。故本题选A。
考题出处:待更新
6、【数量关系】一个容器盘有一定量盐水,第一次加入适量水后,容器内盐水浓度为3%,第二次再加入同样多水后,容器内盐水浓度为2%,则第三次加入同样多的水后盐水浓度为:
A:0.005
B:0.01
C:0.012
D:0.015
正确答案:D
解析:设第一次加水后有100克盐水,则盐有100×3%=3克。第二次加水后浓度为2%,盐水重量为3÷2%=150克。每次加水50克,第三次加完后盐水重量为200克,浓度为3÷200=1.5%。故本题选D。
考题出处:待更新
7、【数量关系】一个人从家到公司,当他走到路程一半的时候,速度下降了10%,问:他走完全程所用时间的前半段和后半段所走的路程比是:
A:10∶9
B:21∶19
C:11∶9
D:22∶18
正确答案:B
解析:设初始速度为10,则后半程速度为9,设总路程为360,则每半段路程为180,前半段路程所用时间为180÷10=18,后半段路程所用时间为180÷9=20,总时间为18+20=38,前半段时间和后半段时间均为19。结合题目条件,后半段时间走过的路程为9×19=171,则前半段时间走过的路程为360-171=189,则所求为189∶171=21∶19。故本题选择B项。
考题出处:2011年广东省公务员录用考试《行测》试卷第6题
8、【数量关系】一个三位数的个位数字比十位数字小1,百位数字是十位数字的3倍。若将个位与百位数字对调,所得新三位数比原三位数小693,则原三位数个位、十位、百位的数字之和是:
A:12
B:14
C:13
D:15
正确答案:B
解析:方法一,由题意可知,该三位数的百位数字应为3的倍数,有3、6、9三种情况,又因为个位与百位数字对调后所得的三位数比原三位数小693,则原三位数的百位数字只能为9。百位数字是十位数字的3倍,则十位数字为3;个位数字比十位数字小1,则个位数字为2。综上可得,该三位数为932,各数位数字之和为9+3+2=14。故本题选B。
方法二,设原三位数中十位数字为x,则百位数字为3x,个位数字为(x-1),大小为3x×100+x×10+x-1;个位与百位数字对调后,新三位数的大小为(x-1)×100+ x×10+3x,有3x×100+x×10+x-1=(x-1)×100+x×10+3x+693,解得x =3,则个位数字为3-1=2,百位数字为3×3=9,各数位数字之和为9+3+2=14。故本题选B。
方法三,设原三位数中十位数字为x,则百位数字为3x,个位数字为(x-1),那么个位、十位、百位数字之和为x+3x+x-1=5x-1,即各数位数字之和加1能被5整除。观察选项,只有B项符合。故本题选B。
考题出处:2020年江苏省公务员《行测》试卷(C类)-考友回忆版第56题
9、【数量关系】11.教室里有若干学生,走了10名女生后,男生是女生人数的2倍,又走了9名男生后,女生是男生人数的5倍。问:最初有多少名女生?
A:15
B:12
C:10
D:9
正确答案:A
解析:设最初有x名女生,则男生人数为2×(x-10),且由题意可知,x-10=5×[2×(x-10)-9],解得x=15。也可由题意知最初女生人数减去10后是5的倍数,且是一个正整数,结合选项,排除B、C、D项,只能选择A项。
考题出处:待更新
10、【数量关系】甲、乙两个学校的在校生人数之比为5∶3,甲学校如果转入30名学生,再将85名学生转到乙学校,则两个学校在校生人数相同。则此时乙学校学生人数在以下哪个范围内?
A:不到200人
B:在200~240人之间
C:在241~280人之间
D:超过280人
正确答案:D
解析:设原本甲、乙两个学校各有5x人、3x人,此时甲学校有(5x+30-85)人,乙学校有(3x+85)人。根据题意有5x+30-85=3x+85,解得x=70。则所求为3×70+85=295人,超过280人。故本题选D。
考题出处:2020年北京市公务员《行测》试卷(区级及以上)-考友回忆版第76题,2020年北京市公务员《行测》试卷(乡镇)-考友回忆版第76题
PS:考题出处均整理自网友分享的考生回忆版题目内容,数据基于网络内容整理,仅供参考